Study on solvent and process simulation for CO2 absorption

Jian CHEN, Weiyang Fei

State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University, Beijing, China

Contents

- 1. Background
- 2. Absorption Solvent
- 3. Mass Transfer Packings
- 4. Process Simulation

Background-Global Warming Issue

Since 1979, more than 20% of the Polar ice Cap has melted away(2005)

Background-Importance of CCS

- **□** CO2 is the main part of greenhouse gases
- Methods to lower CO2 emission:
 energy saving, energy constitution
 capture and sequestration
- □ CO2 is mainly from fossil energy resources
 Science, "Ready for CCS", 2007,2.
 US、Russia、China、India and Australia, 75%
- □ CCS cost < disasters because of CO2 emission

Background- Cost of CCS

Background-Cost of CCS

Cost relative to use of same fuel in least cost plant without capture

Source: International Energy Agency

Background - CO2 capture methods

□ Absorption

Chemical, low-pressure, high energy consumption MEA,DEA,MDEA, AMP

Physical, high-pressure, low energy consumption Methanol, Propylene carbonate, Polyethanol Glycol

- **■** Membrane CO2/H2, CO2/N2
- **□** Adsorption, high-pressure

Background - Main research topics

■ Study on molecular design for solvents

higher absorption ability for CO2, lower energy consumption for solvent regeneration. Structure $\leftarrow \rightarrow$ absorption ability

■ Study on mass transfer packings

Improve mass transfer efficiency, lower cost on facility and operation.

■ Study on process simulation

Pursue new processes, lower total capture cost.

Contents

- 1. Background
- 2. Absorption Solvent
- 3. Mass Transfer Packings
- 4. Process Simulation

Absorption solvents

For CO2 solubility in aqueous amine solution

Vapor-liquid equilibrium with Chemical Reactions:

Dissociation of water

$$H_2O \Leftrightarrow OH^- + H^+$$

First grade hydrolysis of CO₂

$$CO_2+H_2O \Leftrightarrow HCO_3^-+H^+$$

Second grade hydrolysis of CO₂

$$HCO_3^- \Leftrightarrow CO_3^{2-} + H^+$$

Protonation of an Amine

$$AmineH^+ \Leftrightarrow Amine + H^+$$

Formation of a Carbarmate

Absorption Solvents

Chemical Solvents and their properties

Solvents		Circle Loading	Rate	Degradation
Primary,	MEA	0.25	Fast	Middle
Secondary,	DEA	0.3	Middle	Middle
Tertiary,	MDEA	0.3	Slow	Slow
Steric Hindered	, AMP	0.6	Slow	Middle+

Mixing Solvents for best loading and rate: AMP/MEA, MDEA/PZ

Molecular design for solvents

Monoethanolamine

Monoethanolamine(H⁺)

Wei Chen, et al. 11th
International Conference on
Properties and Phase Equilibria
for Product and Process Design.
May 20-25, 2007. Crete, Greece.

Table 1. Gas-Phase Energies ΔG_{gas} (kcal/mol)

	$\Delta G_{gas}^{}a}$	$\Delta {G_{gas}}^b$	$\Delta G_{gas}^{}c}$	$\Delta G_{ ext{exptl}}^{d}$
MEA	-212.39	-212.30	-211.87	-214.34
DEA	-224.26	-223.97	-223.22	-219.88
MDEA	-226.98	-227.18	-225.38	
2-(methylamino)ethanol	-219.26	-219.16	-218.71	
1-amino-2-propanol	-214.24	-214.16	-213.35	

^a B3LYP/6-311+G(3df,2p)//HF/6-31+G(d), the zero-point energy and thermal correction scaled by 0.8929.

^bB3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d), the zero-point energy and thermal correction scaled by 0.9804.

^c CBS-4. ^d Experimental data taken from ref 27.

Table 2. Solvation Energies $\Delta G_{sol}(AH^+) - \Delta G_{sol}(A)$ (kcal/mol)

	CPCM ^a	CPCM^b	$CPCM^c$	CPCM^d
MEA	-60.61	-60.88	-60.56	-60.72
DEA	-51.38	-51.71	-51.25	-51.42
MDEA	-47.22	-47.80	-48.09	-47.62
2-(methylamino)ethanol	-56.14	-56.40	-56.14	-56.20
1-amino-2-propanol	-59.29	-59.44	-59.00	-59.26

 $^{^{}a}$ CPCM/HF/6-31+G(d)//HF/6-31+G(d). b CPCM/B3LYP/6-31+G(d)//HF/6-31+G(d).

 $^{^{}c} \ CPCM/B3LYP/6-31+G(d)//B3LYP/6-31+G(d). \ ^{d} \ CPCM/B3PW91/6-31+G(d)//HF/6-31+G(d).$

Table 3. pK_a Values in Aqueous Solution

1 "					
	B3LYP/6-311+G(3df,2p)//HF/6-31+G(d)		CBS-4		
	CPCM ^a	CPCM^b	CPCM^a	$CPCM^b$	
	pK_a	pK_a	pK_a	pK_a	$pK_{a(exptl)}^{c}$
MEA	-8.51	-8.71	-8.13	-8.33	-9.51
DEA	-10.44	-10.69	-9.68	-9.93	-8.95
MDEA	-9.39	-9.82	-8.22	-8.64	-8.63
2-(methylamino)ethanol	-10.27	-10.46	-9.87	-10.06	-9.77
1-amino-2-propanol	-8.90	-9.01	-8.25	-8.36	- 9.46

^a CPCM/HF/6-31+G(d)//HF/6-31+G(d). ^b CPCM/B3LYP/6-31+G(d)//HF/6-31+G(d). ^c Experimental data taken from ref 32.

Table 4. Hydrogen Bond Lengths (L)

	bond	$L(A)^a$
MEA	H(O)···N	2.251
MEAH ⁺	H(N)···O	2.051
DEA	H(O1)···N	2.276
DEA	H(N)···O2	2.432
$DEAH^{^{+}}$	H1(N)···O1	2.086
DEAR	H2(N)···O2	2.086
MDEA	H(O1)···N	2.402
MDEA	H(O2)…N	2.402
$MDEAH^+$	H(N)···O1	2.156
WIDEAH	H(N)···O2	2.156
2-(methylamino)ethanol	H(O)···N	2.285
2-(methylamino)ethanol(H ⁺)	H(N)···O	2.068
1-amino-2-propanol	H(O)···N	2.187
1-amino-2-propanol(H ⁺)	H(N)···O	2.018

^a Most stable geometry optimized at the B3LYP/6-31+G(d) level.

The effect of a hydrogen bond

With no hydrogen bond for MEA in water, the result is improved as:

13.48 13.75 12.96 13.23 compared with 12.97

■ With no hydrogen bond for DEAH+ in water, the result is improved also clearly.

Monoethanolamine

Monoethanolamine(H⁺)

Loading of different absorption solvents

Molecular Structure ←→ Capture Ability

Circulation Loading of absorption solvents

Contents

- 1. Background
- 2. Absorption Solvent
- 3. Mass Transfer Packings
- 4. Process Simulation

Study on mass transfer packings

High efficient packings:

Faster mass transfer Lower packing height

Lower pressure drop Lower pumping energy

CFD Simulation

Pall Ring

Super Mini Ring(SMR)

Computational Fluid Dynamics (CFD)

SMR

Plum Flower Mini Ring (PFMR)

CFD simulation

PIV Measurement

PIV (particle image velocimetry)

Velocity vector of ring packing

height/diameter=0.25, inclination=45

Experiment facility

Column type	Column diameter	Packing element height (m)	Packing material	Experiment system	Experiment condition
Column I	50	0.6		alcohol and n-propyl alcohol	Total reflux, atm
Column II	100	0.8		alcohol and water	Total reflux, atm

Comparison of flooding velocity among PFMR, Pall Ring & Intalox Saddle

Comparison of mass transfer between PFMR and Pall Ring

Comparison of mass transfer between PFMR, Pall Ring and Intalox Saddle

New structured packings

CFD for liquid flow on packings

Impact of corrugation angle

Experiment results

Contents

- 1. Background
- 2. Absorption Solvent
- 3. Mass Transfer Packings
- 4. Process Simulation

Simulation for chemical absorption processes

Solubility, kinetics and mass transfer calculation

Simulation of chemical absorption processes

Correlation of gas solubility in aqueous amine solution

Clegg-Pitzer model

$$\frac{G^{E}}{RT} = \frac{G^{DH}}{RT} + \frac{G^{S}}{RT} \qquad \qquad \ln \gamma_{i} = \left(\frac{\partial G^{E} / RT}{\partial n_{i}}\right)_{T, P, n_{j \rightarrow i}}$$

$$\frac{G^{DH}}{RT} = -\frac{4A_x I_x}{\rho} \ln(1 + \rho I_x^{1/2}) + \sum_c \sum_a x_c x_a B_{ca} g(\alpha I_x^{1/2})$$

$$\frac{G^{S}}{RT} = x_{I} \sum_{n} x_{n} \sum_{c} \sum_{a} F_{c} F_{a} W_{nca} + \sum_{n} \sum_{n'} x_{n} x_{n'} (A_{n'n} x_{n} + A_{nn'} x_{n'})$$

Simulation of chemical absorption processes

Table 1. Chemical reactions and their equilibrium constants for the system AMP-H₂O-CO₂ ($\ln K = A + B/T + C \times \ln T$)

Chemical reaction	A	В	С
$H_2O \Leftrightarrow H^+ + OH^-$	132.9	-13446.	-22.48
$AMPH^+ \iff AMP + H^+$	-5.525	-6382.0	0.0
$CO_2+H_2O \Leftrightarrow HCO_3^-+H^+$	231.5	-12092.1	-36.78
$HCO_3^- \Leftrightarrow CO_3^{2-} + H^+$	216.05	-12431.7	-35.48

$$f_{1(G)} = f_{1(L)} = x_1 \gamma_1 H_1^0$$
 $f_{i(G)} = f_{i(L)} = x_i \gamma_i P_i^0$

CO₂ solubility in aqueous amine solution

Analysis on Capture Energy Consumption

Absorption Pressure

Amine concentration

Regeneration Pressure

Solvent flowrate

Global optimization on absorption processes

Research expects

- Absorption Solvent;Mass transfer Packings;Process simulation.
- Establish a research platform on molecular design, mass transfer and process identification for CO2 capture.
- **■** Develop new CO2 capture technologies with low cost.

Thanks!

863 project (2006AA05Z316) of MOST, CHINA

Wei Chen, Dongfang Guo, Yueyang Zhong, Que Zheng